10004 measured reflections

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*R*,2*R*)/(1*S*,2*S*)-1,2-Bis(2-hydroxyphenyl)ethylenediammonium dibromide monohydrate

Hae-Jo Kim,^a Alan J. Lough^{b*} and Jik Chin^b

^aDepartment of Chemistry, Kyonggi University, Suwon 443-760, Republic of Korea, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: alough@chem.utoronto.ca

Received 16 August 2007; accepted 17 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; Hatom completeness 91%; disorder in solvent or counterion; R factor = 0.052; wR factor = 0.153; data-to-parameter ratio = 15.3.

In the cation of the title compound, $C_{14}H_{18}N_2O_2^{2+}\cdot 2Br^-\cdot H_2O$, the two H atoms attached to the two sp^3 -hybridized C atoms are in an anti orientation with respect to each other and the dihedral angle between the two benzene rings is 49.5 (2)°. The crystal structure is stabilized by $O-H\cdots$ Br and $N-H\cdots$ Br hydrogen bonds. The solvent O atom is disordered equally over three positions.

Related literature

For background information, see: Kim, Kim, Alhakimi *et al.* (2005); Kim, Kim, Lough *et al.* (2005); Kim *et al.* (2006). For other related literature, see: Bryant *et al.* (2002); Gust & Schönenberger (1993); Lucet *et al.* (1998).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{18}N_2O_2^{2+}\cdot 2Br^-\cdot H_2O\\ M_r = 424.14\\ Monoclinic, \ P2_1/c\\ a = 5.4499 \ (5) \ \mathring{A}\\ b = 16.883 \ (2) \ \mathring{A}\\ c = 20.042 \ (2) \ \mathring{A}\\ \beta = 95.321 \ (8)^\circ \end{array}$

 $V = 1836.1 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 4.43 \text{ mm}^{-1}$ T = 293 (2) K $0.36 \times 0.26 \times 0.03 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.465, T_{max} = 0.855$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 211

 $wR(F^2) = 0.153$ H

 S = 1.03 $\Delta \mu$

 3233 reflections
 $\Delta \mu$

3233 independent reflections 2162 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.110$

211 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.57~e~\AA^{-3}\\ &\Delta\rho_{min}=-0.45~e~\AA^{-3} \end{split}$$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots Br2^{i}$	0.82	2.43	3.217 (4)	160
$O2-H2\cdots Br2^{ii}$	0.82	2.42	3.194 (4)	157
$N1 - H1B \cdots Br2^{iii}$	0.89	2.43	3.314 (5)	170
N1−H1C···Br1	0.89	2.72	3.517 (5)	150
$N1 - H1D \cdot \cdot \cdot Br1^{ii}$	0.89	2.46	3.285 (5)	155
$N2 - H2B \cdot \cdot \cdot Br2$	0.89	2.45	3.330 (5)	168
$N2-H2C\cdots Br1^{ii}$	0.89	2.95	3.757 (5)	152
$N2-H2D\cdots Br1$	0.89	2.44	3.287 (5)	159

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2001); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the NSERC, Canada, and the University of Toronto for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2027).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bryant, C., Chin, J., Lough, A. J. & Alhakimi, G. (2002). Acta Cryst. E58, 0456-0457.
- Gust, R. & Schönenberger, H. (1993). Eur. J. Med. Chem. 28, 103-115.
- Kim, H., Yen, C., Preston, P. & Chin, J. (2006). Org. Lett. 8, 5239-5242.
- Kim, H.-J., Kim, H., Alhakimi, G., Jeong, E. J., Thavarajah, N., Studnicki, L., Koprianiuk, A., Lough, A. J., Suh, J. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16370–16371.
- Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.
- Lucet, D., Le Gall, T. & Mioskowski, C. (1998). Angew. Chem. Int. Ed. 37, 2580–2627.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2001). *SHELXTL/PC*. Bruker AXS Inc., Madison, USA. Spek, A. L. (2003). *J. Appl. Cryst.* **36**, 7–13.

supplementary materials

Acta Cryst. (2007). E63, o3901 [doi:10.1107/S1600536807040810]

(1*R*,2*R*)/(1*S*,2*S*)-1,2-Bis(2-hydroxyphenyl)ethylenediammonium dibromide monohydrate

H.-J. Kim, A. J. Lough and J. Chin

Comment

Chiral vicinal diamines are found in a wide variety of stereoselective catalysts (Lucet *et al.*, 1998). We have shown that the title compound is very useful for making many chiral vicinal diamines in enantiomerically pure form by diaza-Cope rearrangement reaction (Kim, Kim, Alhakimi *et al.*, 2005; Kim, Kim, Lough *et al.*, 2005; Kim *et al.*, 2006). The crystal structure reveals that the two hydrogen atoms attached to the two sp^3 hybridized carbon are in an anti orientation with respect to each other while the two phenol groups and the two ammonium groups are in *gauche* orientations. Diimines formed between the title compound and aryl aldehydes also form the same conformer and are ideally pre-organized for the diaza-Cope rearrangement reaction. In contrast, in the structure of the *meso-1,2-(2-hydroxyphenyl)-ethylenediamine* (Bryant *et al., 2002*) the hydrogen atoms, the phenols and the ammonium groups are all in anti orientations.

Experimental

The title compound was prepared according to a literature procedure (Gust & Schönenberger, 1993). Crystals suitable for X-ray diffraction were grown as colorless plates by slow diffusion of ethanol to a solution of the title compound in water over a period of 2 weeks. ¹H NMR (300 MHz, DMSO-d₆): 10.29 (s, 2H of OH); 8.50 (br s, 6H of NH₃); 7.09 (m, 4H of ArH); 6.80 (d, ${}^{3}J$ = 8.1 Hz, 2H of ArH); 6.68 (t, ${}^{3}J$ = 7.5 Hz, 2H of ArH); 5.19 (s, 2H of C*H).

Refinement

All hydrogen atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å, N—H = 0.89 Å and O—H = 0.82 Å. They were included in the refinement in the riding-motion approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ and O). A difference Fourier map revealed three peaks close to each other which were interpreted as a disordered O atom from a solvent H₂O molecule. This disordered water molecule was included in the refinement as three one third occupancy O atoms but the H atoms were not located or included. These H atoms are however included in the molecular formula.

Figures

Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. The disordered water solvent molecule is not shown.

(1R,2R)/(1S,2S)-1,2- Bis(2-hydroxyphenyl)ethylenediammonium dibromide monohydrate

 $F_{000} = 848$

 $D_{\rm x} = 1.534 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 30763 reflections

 $\lambda = 0.71073 \text{ \AA}$

 $\theta = 2.6\text{--}25.0^{o}$

 $\mu = 4.43 \text{ mm}^{-1}$

T = 293 (2) K

Plate, colourless

 $0.36 \times 0.26 \times 0.03 \text{ mm}$

Crystal data

C₁₄H₁₈N₂O₂²⁺·2Br⁻·H₂O $M_r = 424.14$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.4499 (5) Å b = 16.883 (2) Å c = 20.042 (2) Å $\beta = 95.321$ (8)° V = 1836.1 (3) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer	3233 independent reflections
Radiation source: fine-focus sealed tube	2162 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.110$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.6^{\circ}$
ϕ scans, and ω scans with κ offsets	$h = -6 \rightarrow 6$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$k = -17 \rightarrow 20$
$T_{\min} = 0.465, \ T_{\max} = 0.855$	<i>l</i> = −23→23
10004 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0794P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.153$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$
3233 reflections	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
211 parameters	Extinction correction: SHELXTL (Sheldrick, 2001), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0034 (10)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y 0.0609 (3) Br1 -0.02139(12)0.20389 (4) 0.14353 (3) Br2 0.22244 (12) -0.09688(4)0.17880 (4) 0.0618 (3) 01 0.1756 (8) 0.2625 (3) 0.3199 (2) 0.0627 (12) H10.0814 0.2971 0.3308 0.094* 02 0.8556 (8) 0.0179 (3) 0.2481(2)0.0656 (12) H2 0.9143 -0.02050.2302 0.098* N1 0.5375 (9) 0.2472 (3) 0.2386 (2) 0.0503 (12) H1B 0.5854 0.2928 0.2580 0.075* H1C 0.3762 0.2489 0.2266 0.075* H1D 0.6181 0.2395 0.2025 0.075* N2 0.4404 (10) 0.0871 (3) 0.1949 (2) 0.0537 (13) H2B 0.4033 0.0362 0.1882 0.081* H₂C 0.5906 0.0965 0.1827 0.081* H2D 0.3312 0.1169 0.1706 0.081* C1 0.5929 (10) 0.1802 (3) 0.2873 (3) 0.0453 (13) H1A 0.7665 0.1655 0.2862 0.054* C2 0.4339 (10) 0.1066 (3) 0.2677 (3) 0.0457 (13) H2A 0.1191 0.2753 0.055* 0.2631 C3 0.5552 (10) 0.2058 (3) 0.3577 (3) 0.0472 (14) C4 0.3491 (11) 0.2476 (4) 0.3722 (3) 0.0542 (15) C5 0.3219 (13) 0.2731 (4) 0.4373 (3) 0.0628 (17) H5A 0.1841 0.3022 0.4463 0.075* C6 0.5030 (15) 0.2544 (5) 0.4885 (3) 0.073 (2) H6A 0.4854 0.5320 0.087* 0.2713 C7 0.7045 (15) 0.2121 (4) 0.4758 (4) 0.070(2)H7A 0.8232 0.1994 0.5105 0.084* C8 0.7338 (13) 0.1876 (4) 0.4108 (3) 0.0604 (17) H8A 0.1588 0.4022 0.072* 0.8730 C9 0.5135 (11) 0.0366 (3) 0.3109 (3) 0.0471 (14) C10 0.3794 (12) 0.0146 (4) 0.3634 (3) 0.0611 (17) H10A 0.2408 0.0436 0.3722 0.073* C11 0.4512 (15) -0.0507(5)0.4033 (4) 0.082(2)0.098* H11A 0.3621 -0.06460.4389

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C12	0.6536 (15)	-0.0946 (5)		0.3899 (5	5)	0.082	(2)	
H12A	0.6986	-0.1388		0.4159		0.098	*	
C13	0.7897 (13)	-0.0735 (4)		0.3383 (4	•)	0.070	(2)	
H13A	0.9262	-0.1035		0.3295		0.084	*	
C14	0.7238 (10)	-0.0074 (4)		0.2993 (3	5)	0.053	5 (15)	
O1W	0.480 (6)	0.0574 (12)		0.0596 (8	3)	0.124	(9)	0.333
O2W	0.330 (6)	0.0251 (11)		0.0205 (9))	0.127	(10)	0.333
O3W	0.645 (4)	0.0134 (14)		0.0410 (9))	0.115	(7)	0.333
Atomic displacen	nent parameters ((A^2)						
	U^{11}	U ²²	U^{33}		U^{12}		U^{13}	U^{23}
Br1	0.0569 (4)	0.0658 (5)	0.0593 (4	4)	0.0077 (3)		0.0020 (3)	0.0038 (3)
Br2	0.0619 (4)	0.0403 (4)	0.0838 (5	5)	0.0006 (3)		0.0100 (3)	-0.0018 (3)
01	0.056 (3)	0.063 (3)	0.069 (3)		0.013 (2)		-0.001 (2)	-0.011 (2)
O2	0.064 (3)	0.050 (3)	0.086 (3)		0.015 (2)		0.024 (2)	0.008 (2)
N1	0.053 (3)	0.040 (3)	0.058 (3)		-0.004 (2)		0.008 (2)	0.005 (2)
N2	0.063 (3)	0.044 (3)	0.053 (3)		0.004 (2)		0.001 (2)	-0.002 (2)
C1	0.043 (3)	0.041 (3)	0.051 (3)		0.000 (2)		0.000 (3)	0.004 (3)
C2	0.043 (3)	0.037 (3)	0.058 (3)		-0.001 (2)		0.010 (3)	-0.003 (3)
C3	0.045 (3)	0.043 (3)	0.054 (3)		-0.007 (3)		0.005 (3)	0.000 (3)
C4	0.050 (3)	0.048 (3)	0.065 (4)		0.000 (3)		0.005 (3)	-0.003 (3)
C5	0.067 (4)	0.058 (4)	0.064 (4)		-0.006 (3)		0.014 (4)	-0.014 (3)
C6	0.090 (5)	0.076 (5)	0.054 (4)		-0.015 (4)		0.014 (4)	-0.012 (4)
C7	0.084 (5)	0.068 (5)	0.056 (4)		-0.015 (4)		-0.010 (4)	0.007 (3)
C8	0.059 (4)	0.053 (4)	0.068 (4)		-0.009 (3)		-0.003 (3)	0.004 (3)
C9	0.051 (3)	0.037 (3)	0.054 (3)		-0.003 (3)		0.006 (3)	0.000 (3)
C10	0.060 (4)	0.055 (4)	0.069 (4)		-0.006 (3)		0.015 (3)	0.010 (3)
C11	0.080 (5)	0.080 (6)	0.088 (5)		-0.008 (4)		0.021 (4)	0.028 (5)
C12	0.072 (5)	0.071 (5)	0.100 (6)		-0.002 (4)		-0.003 (4)	0.030 (5)
C13	0.065 (4)	0.046 (4)	0.099 (6)		0.004 (3)		0.005 (4)	0.011 (4)
C14	0.043 (3)	0.041 (3)	0.076 (4)		-0.004 (3)		0.003 (3)	0.002 (3)
O1W	0.26 (3)	0.074 (12)	0.039 (9)		-0.018 (17)		0.047 (14)	-0.006 (8)
O2W	0.27 (3)	0.059 (11)	0.056 (11)	-0.026 (15)		0.030 (14)	0.003 (9)
O3W	0.132 (17)	0.135 (18)	0.073 (12	2)	0.030 (14)		-0.009 (12)	-0.042 (12)

Geometric parameters (Å, °)

1.368 (7)	C4—C5	1.394 (9)
0.8200	C5—C6	1.393 (10)
1.374 (7)	С5—Н5А	0.9300
0.8200	C6—C7	1.354 (11)
1.507 (7)	С6—Н6А	0.9300
0.8900	С7—С8	1.390 (10)
0.8900	С7—Н7А	0.9300
0.8900	C8—H8A	0.9300
1.500 (7)	C9—C10	1.386 (9)
0.8900	C9—C14	1.403 (8)
0.8900	C10—C11	1.396 (10)
	1.368 (7) 0.8200 1.374 (7) 0.8200 1.507 (7) 0.8900 0.8900 0.8900 1.500 (7) 0.8900 0.8900 0.8900	1.368 (7) C4—C5 0.8200 C5—C6 1.374 (7) C5—H5A 0.8200 C6—C7 1.507 (7) C6—H6A 0.8900 C7—C8 0.8900 C8—H8A 1.500 (7) C9—C10 0.8900 C10—C11

N2—H2D	0.8900	C10—H10A	0.9300
C1—C3	1.508 (8)	C11—C12	1.376 (11)
C1—C2	1.544 (8)	C11—H11A	0.9300
C1—H1A	0.9800	C12—C13	1.374 (11)
С2—С9	1.506 (8)	C12—H12A	0.9300
C2—H2A	0.9800	C13—C14	1.391 (9)
C3—C4	1.380 (8)	С13—Н13А	0.9300
C3—C8	1.407 (8)		
C4—O1—H1	109.5	C3—C4—C5	120.9 (6)
C14—O2—H2	109.5	C6—C5—C4	119.4 (7)
C1—N1—H1B	109.5	С6—С5—Н5А	120.3
C1—N1—H1C	109.5	С4—С5—Н5А	120.3
H1B—N1—H1C	109.5	C7—C6—C5	120.7 (7)
C1—N1—H1D	109.5	С7—С6—Н6А	119.6
H1B—N1—H1D	109.5	С5—С6—Н6А	119.6
H1C—N1—H1D	109.5	C6—C7—C8	120.0 (7)
C2—N2—H2B	109.5	С6—С7—Н7А	120.0
C2—N2—H2C	109.5	С8—С7—Н7А	120.0
H2B—N2—H2C	109.5	C7—C8—C3	120.7 (7)
C2—N2—H2D	109.5	С7—С8—Н8А	119.6
H2B—N2—H2D	109.5	С3—С8—Н8А	119.6
H2C—N2—H2D	109.5	C10-C9-C14	118.7 (6)
N1—C1—C3	110.8 (5)	C10—C9—C2	120.2 (5)
N1—C1—C2	111.4 (4)	C14—C9—C2	121.1 (5)
C3—C1—C2	110.3 (5)	C9—C10—C11	120.4 (7)
N1—C1—H1A	108.1	C9—C10—H10A	119.8
C3—C1—H1A	108.1	C11—C10—H10A	119.8
C2—C1—H1A	108.1	C12-C11-C10	120.1 (8)
N2—C2—C9	110.8 (4)	C12—C11—H11A	120.0
N2—C2—C1	111.2 (5)	C10-C11-H11A	120.0
C9—C2—C1	111.1 (5)	C13—C12—C11	120.4 (7)
N2—C2—H2A	107.9	C13—C12—H12A	119.8
С9—С2—Н2А	107.9	C11—C12—H12A	119.8
C1—C2—H2A	107.9	C12—C13—C14	120.1 (7)
C4—C3—C8	118.2 (6)	C12—C13—H13A	120.0
C4—C3—C1	121.8 (5)	C14—C13—H13A	120.0
C8—C3—C1	119.9 (5)	O2—C14—C13	122.9 (6)
O1—C4—C3	116.8 (6)	O2—C14—C9	116.8 (5)
O1—C4—C5	122.2 (6)	C13—C14—C9	120.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O1—H1…Br2 ⁱ	0.82	2.43	3.217 (4)	160
O2—H2···Br2 ⁱⁱ	0.82	2.42	3.194 (4)	157
N1—H1B···Br2 ⁱⁱⁱ	0.89	2.43	3.314 (5)	170
N1—H1C···Br1	0.89	2.72	3.517 (5)	150
N1—H1D…Br1 ⁱⁱ	0.89	2.46	3.285 (5)	155

supplementary materials

N2—H2B···Br2	0.89	2.45	3.330 (5)	168		
N2—H2C···Br1 ⁱⁱ	0.89	2.95	3.757 (5)	152		
N2—H2D···Br1	0.89	2.44	3.287 (5)	159		
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$; (ii) $x+1$, y , z ; (iii) $-x+1$, $y+1/2$, $-z+1/2$.						

